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1 Introduction

How can one systematically analyze a game such as Chess, Go, Checkers, Tic-Tac-Toe, or Hex? A naive
attempt that explores all future possibilities quickly runs into an astronomical number of positions. Indeed,
the “state space” of each move tree typically grows so large that brute force analysis by a computer (or a
person) is hopeless, even though the game is finite and theoretically decidable.

Traditional Game Theory focuses mostly on incomplete information or stochastic games, such as Poker,
where chance or hidden cards play a key role. In contrast, Combinatorial Game Theory (sometimes also called
Positional Game Theory) focuses on perfect information games with no randomness in the rules. Chess, Go,
and Hex are classic examples: both players know the entire game state at all times and no hidden or chance
moves occur. The payoff is often ternary: a player either wins, draws, or loses.

A natural question arises: if these games are purely deterministic, why not just use a computer to solve
them? The short answer is that although brute force is theoretically possible, the search space is typically
enormous. For instance, consider a 5 x 5 x 5 three-dimensional version of Tic-Tac-Toe: there are on the order
of 3125 possible positions. Even a powerful computer cannot exhaustively enumerate such a tree in reasonable
time.

This realization motivates the field of Combinatorial Game Theory (CGT), which blends classical mathe-
matical methods (such as potential functions, the probabilistic method, or linear algebra) with combinatorial,
graph-theoretic, and strategic arguments. In these notes, we introduce some classical examples and techniques
used in analyzing certain combinatorial games.

2 Examples and Basic Techniques

We begin with several illustrative games and show some fundamental tools for tackling them.

2.1 Solitaire Army and Potential Functions

Solitaire Army Puzzle. In a solitaire army puzzle, you have a board (with holes) and a number of “soldiers”
placed in some of the holes. A legal move consists of jumping one soldier over one or more adjacent soldiers
(in a straight line) and removing the jumped soldiers. Each move reduces the total number of soldiers on the
board by at least one. One variant takes place on the infinite integer lattice Z x Z, with soldiers initially placed
in the “negative half-plane” (say, all coordinates z < 0). Moves can only be made horizontally or vertically.
We ask: How many soldiers are needed to push one soldier k steps forward (i.e., into x = +k)?

e k= 1: Clearly 2 soldiers suffice.

e k£ = 2: One can show that 4 soldiers suffice.
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e k= 3: 8 soldiers suffice (a bit more tricky).
e k = 4: 20 soldiers suffice.
o k= 5: Surprisingly, it is impossible!

The impossibility for & = 5 was shown by John Conway in 1961, pioneering what we now call a potential
function or weight function argument.

Theorem 2.1 (Conway, 1961). In the Solitaire Army played on the infinite integer lattice Z x Z, where soldiers
can only jump horizontally or vertically and start in the negative half-plane (x < 0), it is impossible to push
any soldier five steps forward (that is, to a coordinate x = +5).

Sketch with Details. We prove that no matter how many soldiers you initially place in the region {(z,y) | = <
0}, you cannot end up with a soldier at (5,y0). The argument relies on assigning a suitable weight function
w:Z X 7 — Rsg to the lattice points, then showing that:

1. any legal jump cannot increase the total weight of occupied point, and

2. The total weight of any position with a soldier pushed 5 steps forward is larger than the total weight of
any possible initial position.

Clearly, these two properties imply that there is no way to push a soldier 5 steps forward.
Step 1. Defining the Weight Function.
We choose a real number o € (0, 1) such that
a4+ a? = 1.

(One can solve this quadratic to get o = \/52*1 ~ 0.618.. ., the reciprocal of the golden ratio.)

Assigning weights. We want to forbid placing a soldier at (5, 0). Hence, we set w(5,0) = 1. From there, if we
move down one unit in the lattice, we multiply the weight by «, so w(5,—1) = a. Another step down yields
w(5,—2) = a?, and so on. Similarly, from (5, z) we move horizontally to (4, 2) by multiplying by a. In essence,
each horizontal or vertical step changes the weight by a factor of a.

The crucial property we require is:

w(4) + w(B) = w(C),
whenever A, B, C are three collinear consecutive points with B in the middle. Let us see why that holds:

e Suppose w(A) = w.

e Then B is one step from A (vertically or horizontally), so w(B) is either cw or w/a.

2w or w/a?, or aw/a, etc.

e And C is one step from B (same line), so its weight is «
A direct check with o + a? = 1 shows:

wHow=w(l+a) = wa+a®+a) = w®+2a) > w-a?.

Hence, w(A) + w(B) > w(C).

Step 2. Why the Total Weight Never Increases with a Legal Jump.

A legal jump moves a soldier from point A over an adjacent soldier at B onto the point C', then removes
the soldier that was at B. Hence, before the move, points A and B are occupied. After the move, only C' is



newly occupied (while A and B no longer hold soldiers). Therefore, the net change in total weight of occupied
sites is:
A=w(C) — [w(A) +w(B)].

Since w(A) + w(B) > w(C), it follows A < 0. Thus, each legal move can only maintain or decrease the sum
of the occupied weights.

Step 3. Weight of the Negative Half-Plane Is At Most 1.

By construction, w(5,0) = 1. We now show that the total weight of any finite configuration of soldiers
placed entirely in {z < 0} is < 1. Indeed, as we go from (5,0) down and left, each step multiplies the weight
by factors of . One checks carefully (through a neat telescoping or summation argument) that row by row,
column by column, the sum of the weights in the {& < 0} portion does not exceed 1. In particular, no single
point in the negative half-plane is assigned weight 0; everything contributes some positive amount, yet the
entire half-plane adds up to at most 1.

Hence, if you start with finitely many soldiers in = < 0, the initial total weight is less than 1.

Step 4. No Soldier Can Reach (5,0).

If at some time a soldier does occupy (5,0), that point alone contributes weight 1. But also, there might
be other soldiers on the board, contributing more weight, giving a total > 1. However, we argued that every
jump is weight-non-increasing and the initial weight (all soldiers in {z < 0}) was < 1. This is a contradiction,
so you cannot legally arrive at a position containing a soldier at (5,0). Equivalently, one cannot push any
soldier a full five steps forward from the negative side.

This completes the proof that a jump of length 5 is impossible, no matter how many soldiers are placed in
{z < 0}. O

The takeaway is that a well-chosen potential (or weight) function can show that some apparently feasible
position is, in fact, impossible. This technique recurs in many places in combinatorics and combinatorial
games.

2.2 Strategy Stealing

Strategy stealing is a classic argument to prove that in many impartial or partizan games, the first player
(the one who moves first) cannot be at a disadvantage. Although it rarely yields an exzplicit winning strategy,
it often shows at least a guaranteed draw or a guaranteed win for Player L.

Theorem 2.2 (Strategy Stealing). In a two-player perfect-information game where extra moves cannot harm,
the first player can force at least a draw.

Sketch. Suppose, for contradiction, that the second player has a winning strategy. Then the first player can
“steal” it. Concretely:

1. On her first turn, the first player makes an arbitrary move.

2. Then, from that point onward, she pretends she is the second player and follows the second player’s
winning strategy, ignoring the existence of her extra first move.

If following that strategy ever demands a move that was already taken by her extra turn, she can choose any
other free move (no penalty arises because extra moves do not harm). This forces at least a draw, contradicting
the hypothesis that the second player could have forced a win. O

Example: Positional Games. A positional game usually means the following:

e There is a board V, whose elements are called cells, points, or positions.



e There is a family F of winning sets, each a subset of V.

e Two players, I and II, alternate turns claiming free cells of V. If at any point a player fully occupies
all cells of one of the winning sets, that player wins immediately.

e If neither player occupies a winning set by the time V' is exhausted, the game is a draw.

Tic-Tac-Toe is a quintessential example. In such games, Theorem 2.2 guarantees that Player I can never lose
(i.e., she can force at least a draw).

2.3 Clique Games and Ramsey Theory

Consider the k-clique game on K,:

e The board is the edge set E(K,,) of the complete graph on n vertices.

e Each player in turn claims an unclaimed edge of K.

e The winning sets are all K subgraphs, i.e., sets of (g) edges that form a k-clique.
A fundamental result of Ramsey theory states:

Theorem 2.3 (Ramsey). For every k, there is an integer R(k) such that any graph on n > R(k) vertices
must contain either a Ky or an independent set of size k in its complement.

From this, it follows that if n > R(k), then no position can be a draw: any complete coloring of F(K,)
into two colors (say, belonging to Players I and II) inevitably produces a monochromatic Kj in one color or
the other. Hence one player must occupy all edges of some K. By strategy stealing, the first player thus has
a winning strategy. However, the explicit nature of that strategy is still a mystery for all k > 5:

Problem 2.4. For k > 5, find an explicit winning strategy for the first player in the k-clique game on K,
(with n > R(k)).

Problem 2.5. Determine whether the infinite k-clique game on E(Ky) is a draw or a first-player win.

2.4 Hex and the Non-Existence of Draws

The game of Hex was invented independently by Piet Hein and John Nash in the 1940s. The board is
an n X n rhombus of hexagonal cells. The two players, conventionally called Red and Blue, own opposite
edges of the rhombus and alternate claiming a previously unoccupied cell in order to form a continuous path
connecting their two edges. Nash proved:

Theorem 2.6. Hex cannot end in a draw. In the game of Hex on an n X n rhombus of hexagonal cells,
if all cells are claimed (Red or Blue) and no further moves remain, then one of the players necessarily has a
winning chain connecting their opposing edges.

Proof. We provide a constructive argument, often called the “no-draw” or “bridge-and-cut” proof. We will
show that in every fully marked Hex board, there is either a Red-crossing or a Blue-crossing, hence no draw
is possible.

1. Representing the Board via a Planar “Corner Graph.”

Consider the Hex board of side length n. Each hexagon has six corners. We place a vertex of a planar
graph G at each corner of every hexagon. Two vertices (corners) in G are joined by an edge whenever they lie
on the same boundary segment of a single hex cell. Because each hex cell is a regular hexagon, it has 6 edges
and 6 corners, so each cell contributes edges between its corners.



Additionally, we attach four external vertices:
U, Uy Us, Uy (for each corner of the rhombus).

Each external vertex U; is connected to a corner vertex.

2. Color Each Cell Red or Blue, and Create the “Bridging Graph.”

Once the game ends, each hex cell is fully claimed by exactly one player: Red or Blue. We now form a
subgraph G’ C G (often called the bridging graph) as follows:

1. For each corner vertex x in the “core” of G (i.e., not one of the four external vertices), look at the two
or three distinct cells that meet at x.

o If all these cells are of the same color, then x is isolated in G’ (it has degree 0 there). In other
words, x has no edges in G'.

e Otherwise, there are cells of both colors meeting at x. We connect x with an edge in G’ precisely
along each boundary line that separates a Red cell from a Blue cell. (One corner can be incident
to 2 or 3 cells, so typically z ends up with degree 2 in G’, explained below.)

2. The four external vertices {Uy,Us, Uz, Uy} remain in G’ and keep their edges to the corners (since each
boundary line is between a Red-face side and a Blue-face side).

The edges of G’ therefore lie exactly along the common border of a Red cell and a Blue cell; hence we say
G’ is built from “Red-Blue boundaries.” Notice that each external vertex U; is connected to a corner on the
perimeter — specifically where a boundary might be shared by Red and Blue cells.

3. Degree Analysis: deg(z) < 2.

Consider any corner vertex x in the interior (non-external):

o If = touches three cells of the same color, then z is isolated in G’ (degree 0). No edges connect it to
other corners in G’, because no Red/Blue boundary crosses that corner.

o If  touches exactly two cells of color A (say Red) and one cell of color B (Blue), or vice versa, then
exactly two edges of G’ emanate from x, each corresponding to the boundary line with the cell of the
opposite color. Thus x has degree 2 in G’.

e It is impossible for a corner to see three distinct cells of two or more different colors in more complicated
ways: each hex corner is shared by at most 3 cells, so the only patterns are (3 same color) or (2 of one
color, 1 of the other).

Hence, every interior vertex has degree 0 or 2 in G’. Because we also connect external vertices U, each to
exactly one corner, each external vertex has degree 1 in G’.

4. Union of Paths, Cycles, and Isolated Vertices.

We now apply a simple fact: a finite graph whose vertices all have degree 0 or 2 is a disjoint union of
isolated vertices, simple cycles, and simple paths.

Lemma 2.7. Let H be a finite graph in which every vertex has degree 0, 1, or 2. Then each connected
component of H is either:

1. an isolated vertex (degree 0),
2. a simple cycle, or

3. a simple path with two endpoints.



Sketch of lemma. Pick a connected component of H. If it has no edges, it is an isolated vertex (degree 0).
Otherwise, pick any vertex v in that component (degree > 1). Following an edge from v to another vertex w,
we must continue to a unique next vertex (since each has degree 2, so exactly two edges). We get a chain that
either closes into a cycle or eventually terminates if we ever reach a vertex with degree 1. Because H is finite,
the chain cannot continue indefinitely without repeating a vertex. Thus each connected component is a path
or a cycle. O

By this lemma, G’ is a disjoint union of isolated corners, cycles, and paths.

5. Paths Must Connect Two Distinct External Vertices.

Because each external vertex U, is connected to the board and has degree 1, it must appear as an endpoint
of some path in G’ (it cannot be in a cycle or be isolated since its degree is not 2 or 0). Consequently, for each
connected component containing U;, we get a path whose two endpoints are external vertices. Therefore, in
G’ there must be a path connecting some U; to some Uj.

A moment’s thought now reveals that this path corresponds to a Red-crossing or a Blue-crossing path.
Thus one of the two colors obtains a top-to-bottom or side-to-side chain.

Since no position can realize a disconnected boundary for both Red and Blue simultaneously (the bridging
graph structure prevents that), exactly one color must have an unbroken path from one boundary side to the
other. This ensures a win for that color.

Conclusion. Because our final G’ reveals a path connecting the two edges of some player, Hex cannot end
in a draw: exactly one of Red or Blue has a continuous chain across the board. This completes the proof that
Hex is draw-free. O

Corollary 2.8. By the strategy-stealing argument, the first player on an n x n Hex board has a guaranteed
winning strategy (though finding an explicit construction is still an open problem for large n).

2.5 Shannon’s Switching Game
Shannon’s Switching Game is played on a multigraph G:
e The board is F(G), the set of edges of G (multiple edges allowed).
e Two players, called Maker and Breaker, alternate claiming edges, with Breaker going first.

e Maker attempts to build a spanning tree (i.e., claim edges so that every vertex is in one connected
component).

e Breaker tries to prevent that.
Lehman’s 1964 solution is beautiful and concise:

Theorem 2.9 (Lehman). Maker (as the second player) can force a spanning tree if and only if G contains
two edge-disjoint spanning trees.

Sketch. If G has two edge-disjoint spanning trees, then Maker’s strategy is: whenever Breaker claims some edge
that disconnects one of the two trees, Maker immediately claims an edge zy in the other tree that reconnects
those components. Then, Maker can “contract” zy into a new vertex z to reduce GG by one vertex each time,
but it still has two spanning trees. By induction, Maker achieves a spanning tree in the final position.
Conversely, if Maker has a winning strategy, a strategy-stealing argument shows that Breaker (as if he were
second) could also assemble a spanning tree. Hence G must simultaneously support two edge-disjoint spanning
trees. O



2.6 Pairing Strategies

Consider a hypergraph H = (V, F) describing a combinatorial game. A simple but powerful pairing strategy
for the second player is possible if one can partition a subset of V into disjoint 2-element blocks (pairs) such
that every winning set in F contains at least one of these pairs. Then, whenever the first player claims one
element of a pair, the second player immediately claims the other, blocking that pair entirely and preventing
a winning set from being fully claimed by Player I.

Definition 2.10. A pairing strategy is a matching in V such that every set in F contains at least one of the
matched pairs. Claiming the other element whenever the first is taken yields at least a draw for the pairing
player.

A classic sufficient condition for the existence of such a matching is given by Hall’s theorem when the
hyperedges are almost disjoint or each winning set is of size 2 in some bipartite representation.

Theorem 2.11 (Hales—Jewett, 1963; Pairing Strategy Draw). Suppose F is a family of subsets of V' such
that for every subfamily H C F, we have

A4

AceH

> 2[H.

Then the second player can force a pairing strategy draw (or the first player, by the same argument).
A basic corollary (via Hall’s theorem) is:

Theorem 2.12 (Degree Condition for Pairing Strategy). Let F be an n-uniform hypergraph on V. Suppose
that every element of V' belongs to at most n/2 sets in F. Then a pairing strategy draw exists.

2.7 Erdoés—Selfridge Criterion and the Method of Conditional Expectation

Another high-impact technique uses the method of potential functions or conditional expectation to show
that the second player can force a strong draw—meaning the first player can never complete a winning set.
Erdés and Selfridge showed the following global criterion:

Theorem 2.13 (Erdés—Selfridge, 1973). Let F be an n-uniform hypergraph on V. If
|F| + max{degr(v)} < 2",

then the second player has a strategy that prevents any set in F from being fully claimed by Player I (i.e., a
strong draw).

Sketch. Number the sets F = {41,...,Ap}. In each turn, the first player claims an element, and then the
second player responds, removing all sets that contain the chosen element (these become “dead”). We define
a danger function or potential

Dy = ) 27,

SES;

where S; is the set of “surviving” (still-alive) hyperedges at round 7, and ug is the number of unclaimed
elements in s. A careful choice of the second player’s move reduces D; or at least ensures D; 1 < D;. Initially,

< |F| + max deg(F)

D, om

< 1

However, if Player I were to succeed in occupying some entire set A;, we would have Dgna > 1. Because our
strategy ensures D; never increases, this is impossible. Hence the second player forces a strong draw. O



Remark 2.14. This result can be seen as a derandomization of the simpler probabilistic observation that if
|F| < 2™, then a random coloring often has no monochromatic set A; in one color. Erdés—Selfridge’s method
upgrades this existence into an actual strategy.

Examples and Applications.

e 42 and 83 Tic-Tac-Toe:
10 + maxdeg = 10 +3 =13 < 2* = 16.

By Erdés—Selfridge, the second player can force a draw in 4 x 4 Tic-Tac-Toe. Similarly, with a more
thorough count, the second player can also draw in 8 x 8 x 8.

o Maker’s Connectivity Game on K,: One can show using a similar potential argument (or a variant)
that Maker (as second player) can ensure building a spanning tree in the edge set of K, by preventing
certain cutsets from being claimed by Breaker, etc.

3 Biased Games

In many unbiased games (each player claims one cell/edge each turn), the advantage might be so heavily
with Maker/Player I that it becomes interesting to bias the game: let Maker claim m elements per move and
Breaker claim b elements per move. One prototypical example is the Triangle Game on K,, with a (m,b) bias.
The question: does Maker still have a winning strategy to create a triangle?

A simpler model is the Box Game Box(p,q;ai,...,a,):

e The board consists of n disjoint sets (“boxes”) of sizes a;.
e On each turn, Maker claims p free elements while Breaker claims ¢ free elements.
e Maker’s goal is to fully occupy at least one box.

Chvatal and Erdds studied how p and ¢ (and the sizes a;) determine the outcome. One finds a phase transition
in the ratio p/q, reminiscent of threshold phenomena. Using potential-like arguments or enumerations, one
can pinpoint approximate boundaries for Maker’s guaranteed success.

3.1 A Biased Version of Erdgs—Selfridge (Beck’s Theorem)
Beck extended Erd8s—Selfridge to the (p,q) game. The rough statement is:
Theorem 3.1 (Beck, Biased Erdés—Selfridge). Let p,q be positive integers. If
Y +g v < .
AeF
then in the (p,q) game on F, Breaker can prevent any A € F from being fully claimed by Maker.

Thus, even for heavily biased games, a suitable global criterion can guarantee a draw (or a Breaker’s win,
depending on the viewpoint).

4 Random (Mixed) Strategies

Even though Combinatorial Games are deterministic, sometimes a random strategy can help a player
guarantee (with positive probability) a desired outcome, which implies (by determinacy) that a deterministic
winning/drawing strategy exists.



Theorem 4.1 (A Minimum-Degree Game Example). For every € > 0, there is a constant C' such that the
following holds. Suppose G is a graph on n vertices with minimum degree d > C'logn. Then Maker can adopt
a random strategy ensuring, with probability 1 — o(1), that the subgraph Maker claims has minimum degree at
least (1 —€)4.

Sketch. Whenever Breaker claims an edge uv, Maker flips a fair coin and randomly claims either an edge
incident to u or to v. One applies Chernoff bounds and a union bound to show that, with high probability,
Maker’s final subgraph has the desired minimum degree. By determinacy, Maker thus also has a deterministic
way to force §(M) > (l—e)g. O

Random strategies also appear in analyzing linear or sublinear Maker-Breaker games, bounding threshold
biases, and more.

5 Further Directions and Concluding Remarks

We have seen an assortment of classical ideas:
e Potential/Weight Functions: Used to show some outcomes are impossible (Conway’s Army).
e Strategy Stealing: Ensures the first mover never does worse than draw (positional games, Hex).

e Pairing/Matching Strategies: Hall’s theorem ensures a draw if each winning set intersects certain
paired blocks.

e Probabilistic/Expectation Methods: Erdés—Selfridge and Beck’s extension show how to systemat-
ically “derandomize” a draw strategy under certain size or neighborhood conditions.

e Random/Probabilistic Strategies: Maker can flip coins to ensure certain global properties, then
convert to a deterministic solution.

Despite this progress, many natural games (like large clique games, many scoring Tic-Tac-Toe variations,
or infinite-board games) remain open in key respects, with no known explicit winning strategies.
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